CoreFlow 1.0.0
A modern orchestration and execution runtime
Loading...
Searching...
No Matches
Kernel: Harris Corners

Functions

VX_API_ENTRY vx_node VX_API_CALL vxHarrisCornersNode (vx_graph graph, vx_image input, vx_scalar strength_thresh, vx_scalar min_distance, vx_scalar sensitivity, vx_int32 gradient_size, vx_int32 block_size, vx_array corners, vx_scalar num_corners)
 [Graph] Creates a Harris Corners Node.
 
VX_API_ENTRY vx_status VX_API_CALL vxuHarrisCorners (vx_context context, vx_image input, vx_scalar strength_thresh, vx_scalar min_distance, vx_scalar sensitivity, vx_int32 gradient_size, vx_int32 block_size, vx_array corners, vx_scalar num_corners)
 [Immediate] Computes the Harris Corners over an image and produces the array of scored points.
 

Detailed Description

Function Documentation

◆ vxHarrisCornersNode()

VX_API_ENTRY vx_node VX_API_CALL vxHarrisCornersNode ( vx_graph graph,
vx_image input,
vx_scalar strength_thresh,
vx_scalar min_distance,
vx_scalar sensitivity,
vx_int32 gradient_size,
vx_int32 block_size,
vx_array corners,
vx_scalar num_corners )

#include <vx_nodes.h>

[Graph] Creates a Harris Corners Node.

Parameters
[in]graphThe reference to the graph.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]strength_threshThe VX_TYPE_FLOAT32 minimum threshold with which to eliminate Harris Corner scores (computed using the normalized Sobel kernel).
[in]min_distanceThe VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum suppression.
[in]sensitivityThe VX_TYPE_FLOAT32 scalar sensitivity threshold \( k \) from the Harris-Stephens equation.
[in]gradient_sizeThe gradient window size to use on the input. The implementation must support at least 3, 5, and 7.
[in]block_sizeThe block window size used to compute the Harris Corner score. The implementation must support at least 3, 5, and 7.
[out]cornersThe array of VX_TYPE_KEYPOINT objects. The order of the keypoints in this array is implementation dependent.
[out]num_corners[optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar.
Returns
vx_node.
Return values
vx_nodeA node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
Examples
optical_flow.cpp.

◆ vxuHarrisCorners()

VX_API_ENTRY vx_status VX_API_CALL vxuHarrisCorners ( vx_context context,
vx_image input,
vx_scalar strength_thresh,
vx_scalar min_distance,
vx_scalar sensitivity,
vx_int32 gradient_size,
vx_int32 block_size,
vx_array corners,
vx_scalar num_corners )

#include <vxu.h>

[Immediate] Computes the Harris Corners over an image and produces the array of scored points.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]strength_threshThe VX_TYPE_FLOAT32 minimum threshold which to eliminate Harris Corner scores (computed using the normalized Sobel kernel).
[in]min_distanceThe VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum suppression.
[in]sensitivityThe VX_TYPE_FLOAT32 scalar sensitivity threshold \( k \) from the Harris-Stephens equation.
[in]gradient_sizeThe gradient window size to use on the input. The implementation must support at least 3, 5, and 7.
[in]block_sizeThe block window size used to compute the harris corner score. The implementation must support at least 3, 5, and 7.
[out]cornersThe array of VX_TYPE_KEYPOINT structs. The order of the keypoints in this array is implementation dependent.
[out]num_corners[optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.