In this sample we will create an OpenVX graph to run skintone detection on an image or a live camera. This sample application uses OpenCV to decode input image and display the output.

Prerequisites
Steps to run the skin tone sample
Build OpenVX on Linux
* Git Clone project with a recursive flag to get submodules
git clone --recursive https://github.com/KhronosGroup/OpenVX-sample-impl.git
* Use Build.py script
cd OpenVX-sample-impl/
python Build.py --os=Linux --arch=64 --conf=Debug --conf_vision --enh_vision --conf_nn
- Step - 2: Export OpenVX Directory Path
export OPENVX_DIR=$(pwd)/install/Linux/x64/Debug
- Step - 3: Clone the OpenVX Samples project and build the Skin Tone application
cd ~/ && mkdir OpenVXSample-skintone
cd OpenVXSample-skintone/
git clone https://github.com/kiritigowda/openvx-samples.git
- Step - 4: CMake and Build the Skin Tone application
mkdir skintone-build && cd skintone-build
cmake -DOPENVX_INCLUDES=$OPENVX_DIR/include -DOPENVX_LIBRARIES=$OPENVX_DIR/bin/libopenvx.so ../openvx-samples/skin-tone-detector/
make